编者按:在全球知名咨询公司麦肯锡提出“大数据”时代到来之后,这一概念深入到各个行业之中,如今大数据在不断增长之中。各大公司都加快大数据的增长,Berkeley Research Group LLC的董事总经理John Kelly认为不仅仅是大公司,创业公司也应该加速大数据的增长,利用其形成独特的竞争优势。
无论是大公司还是创业公司,数据都可以帮助他们改善产品,让他们做出更明智的选择;数据也可以驱动公司在感知和现实中变得更有价值。
Teles Properties的Sharran Srivatsaa最近告诉我,他们公司是如何利用数据智能作为他们的房地产经纪人模式。通过挖掘、发现和可视化模式的超本地微观市场数据,Teles可以准确地预测客户可能接受的价格和属性。该公司给其经纪人一个独特的市场竞争优势,并在最短的时间里以最高的价格在房屋竞争中胜出。
提倡共享制度的Uber,也是利用大数据改变了整个行业的格局。这个应用程序依赖于数据分析决定那个地区是繁忙的,并激活“增兵定价”来让更多司机前往那个区域。Uber利用数据作为竞争优势和产品。在今年早些时候,Uber同意出售其客户出行模式的数据,结合数据作为收入来源的公司队伍不断壮大。
甚至是老牌公司GE当谈到大数据的时候也会展示他们的独特之处。GE的Predix是一款旨在整合通用传感器从而创造一个真正的物联网的软件,它能够检测和维护用户的需求,预测鼓掌,并将性能数据发送至研究室让其以更快的速度改进产品。
该公司声称他们寄托于工业数据时代,其市盈率持续攀升。感知价值的企业家也可以通过数据获得他们想要的。
这里有一些方法,可以帮助创业这构建一个数据驱动的公司:
1、确定你的数据客户
数据客户不一定是创业公司的客户。Uber的数据客户和使用它服务的广大市民不同。视频游戏发行商Zynga实际上更多,从每个游戏的互动数据和销售分析以确定哪些用户玩相似的游戏,那么就将他们归为一个群体。
2、找出用户所需的数据
哪些见解会对用户的日常行为有直接的影响,以及如何将这些信息收集?它是否可以成为结构化,是否需要立即分析这些信息,或者是否需要让内容变得更加清晰?数据是没有任何背景也没有上下文可依靠,因此创业者必须把它变成对客户有意义的内容。
3、建立或购买数据
一旦数据需求已经确定,接下来就需要建立基础设施来收集数据或者支付第三方工具,利用它提炼出数据。数据生态系统可以利用成本比较低的Amazon Web Services,但是数据科学家依旧必须检查所有提炼出来的数字内容。
我听说过很多关于启动一个大数据项目的复杂性和成本的抗议。人力成本比建立和保持一个独特的服务器成本要高很多。同时,人们可以在很容易来送输送数据的云端服务器订购服务需求。我没有Amazon的股份,但如果它建立了一个基础数据让用户买书变得很容易的话,我相信对每个人来说都是有意义的。
4、强调视觉
数据是科学的,但它的可视化是一门艺术。为了使数据具有可操作性,在某种程度以人类接受和具有说服力的方式呈现出来。FiveThirtyEight的创始人Nate Silver是数据可视化的先驱。FiveThirtyEight利用统计模型预测了2008年总统选举的结果,并证明了数据可视化的情感诉求。
5、自动化产品
如果收集到的数据本身就是一个产品的话,你可以利用自动化收集来输入数据,利用交付的方式来输出数据。记住,一个API作为软件的USB接口,可以用来传输数据。如果代码被设置成端口数据的预测模型话,可以利用自动化产品执行模型的可视化,并让它成为你的一个摇钱树。
到2018年,大数据市场的价值将会达到415亿。专门从事分析的创业公司已经抢占了数百万美元的资金市场。即使创业公司对将数据转化成产品不感兴趣,他们也需要利用这些数据作为自己独特的竞争优势。如果他们不这样做,其竞争对手会跟随显示出来的信息猜测他们的下一步动作,这样他们就会失去竞争力。